Godox AD200 flash for UV, VIS and IR photography

[Updated 2019-07-18] Godox sells a medium-power flash called AD200 with interchangeable heads and several accessories like light modifiers and remote wireless triggers with TTL exposure metering and high speed synchronization capabilities. This gives a lot of flexibility in its use. After a few separate purchases I now own the AD200 and the H200, H200J and H200R heads, an Xpro-O TTL Wireless Flash Trigger, and several light modifiers, all of them branded Godox. (The same flash and accessories are also available under other brand names.) Continue reading Godox AD200 flash for UV, VIS and IR photography

Digital UVA-photography with M43 equipment

How far can we go, with off-the-shelf equipment

One question which I have been pondering for some time is: do I need to have a digital camera converted to full-spectrum for UVA photography? and are there any modern objectives that are good accidental UVA-objectives?

This is not a question of cost alone. Although a converted camera can be used for VIS photography, obtaining good colour reproduction requires effort. A suitable filter is used on the objective to replace the one removed from the image sensor unit during conversion. As it is not possible to find a perfect match to the filter removed, one or more colour profiles of the camera need to be created and applied instead of the one used automatically by the camera and/or raw file converters. So, in many cases, for best results one would need to carry two different cameras to any field trip. In addition a conversion voids the camera manufacturer’s warranty and even access to official service facilities. Continue reading Digital UVA-photography with M43 equipment

Measuring campaign in the Alps

I joined a field measuring campaign organized by my collaborator T. Matthew Robson with the participation of José Ignacio García Plazaola and Beatriz Fernández-Marín from the University of the Basque-Country (see Matt’s CanSEE and my SenPEP blogs for information on our research). We spent the last week of May the at 2100 m a.s.l. in the Alps at the Jardin Botanique du Lautaret measuring solar radiation and the responses of plants to it. I did some measurements of solar radiation but spent most of the time photographing plants and lichens to record their optical properties in the ultraviolet-A, visible and near-infrared regions of the spectrum.

This posts contains several galleries of photographs from the site and the vegetation.

Continue reading Measuring campaign in the Alps

Most neutral density filters are not neutral

[Updated 2019-07-17] A neutral density (ND) filter is a “grey” filter, a filter that transmits equal fractions of the incident radiation at all wavelengths. A perfectly neutral filter over a broad range of wavelengths is an idealized concept, and one very difficult to implement in practice. There are different approaches to making filters approximating colour neutrality. We here compare the spectral transmittance of of ND filters of three different types available for use on camera lenses and explain why the use of some of them can introduce strong colour casts in the photographs we take with them.

Continue reading Most neutral density filters are not neutral

How small can a UV-B plus UV-A sensor be made?

[updated 2019-02-13] [I will update this post again after testing the sensor]

Rather recently Vishay announced a miniature sensor under the name VEML6075 with two channels nominally centred at 365 and 330 nm. The peak width at half maximum is 20 nm. So, in practice it is a sensor measuring two regions within the UV-A band with the tail of one of the two channels extending into the UV-B. It is not a sensor capable of separately measuring the UV-B and UV-A bands. However, under sunlight it collects enough information to obtain a reasonable estimate for the UV Index (see the application note from Vishay for deatils).

It is not just a sensor but instead a sensor module with a digital interface. It has all the electronics for temperature compensation and for converting the analogue signals from the sensor into digital data with a rough calibration applied. The package of this sensor is 1 mm thick and 2 mm times 1.25 mm in area. The sensor itself is much smaller and it follows reasonably well the cosine law without any diffuser. Price? Less than 2€ as a component… and between 4 and 7 € for a breakout board.

A breakout board is a small printed circuit board usually containing a single, or very few components. The components included are only those needed for a single complex integrated circuit or sensor module to function, and given the small size of the components, the board allows easier soldering by hand of wires. I have bought two different breakout boards with the same VEML6075 sensor. They differ in size, the smaller boards has components on both sides, while the larger one only on one side. (Drag the slider to see the bottom of the boards.)

The images above cover an area of 23 mm × 17 mm. I took a pair of photographs at higher magnification, and as it fits a UV sensor, I photographed it both in visible light and in UV-A radiation. The whole image is 3 mm tall by 4 mm wide.

Technical information about the photographs

All photographs were taken with an Olympus E-M1 digital mirrorless camera, tethered to a laptop computer and controlled using Olympus Capture 2 software.  A camera converted to full spectrum was used.

For the images at lower magnification I used a modern M.Zuiko 60 mm f:2.8 Macro objective, a Sunwayfoto FL-96 LED light source. I took focus-bracketed stacks of between 15 and 35 images, depending on the depth of the electronic components on each side of the boards. I merged the stacks of raw images using Helicon Focus 7 and edited and converted the images to compressed JPEG format with Capture One 12.

For the higher magnification photographs I used a Zuiko 38mm f:3.5 macro objective (Olympus OM-System ca. 1972-1975+, single coated early version). The visible source was the same, and the UV-A light source was a Convoy 2+ 365nm UV-A flashlight filtered with a visible blocking filter. For the UV-A photographs a used on the objective a zwb1 2mm thick filter.

All the images are slightly cropped from the full frame, most to better align them for the slider. The photograph below shows the nearly 50-years-old objective. It is very small and its mount is the same as used for microscope objectives.

Zuiko Macro 38 mm f:3.5, RMS mount, Olympus OM-System ca. 1972-1976.

Pinholes in NIR and UVA

Using the E-M1 converted to full spectrum with the Pinhole Pro objectives is possible. Using a 58 mm NIR filter (Hoya R72) attached to the front of the 11 mm Pinhole Pro S11 worked fine, with no increase in vignetting. Using the StraightEdgeU 52 mm or Baader U-filter 2″  with a step-down ring blocked the corners of the image completely. The original 26 mm Pinhole Pro suffers a lot less from vignetting and can be used with these filters of smaller diameter than the front thread of the lens without problem.

Continue reading Pinholes in NIR and UVA

Camera objectives for UV photography

I have been testing some objectives for their UV transmission using LEDs as sources of radiation. I developed a protocol for such tests. Although used in this example to measure the spectral sensitivity of a camera sensor, the protocol can be easily adapted for the measurements of biological action spectra.

Continue reading Camera objectives for UV photography